ContohSoal Cerita. 8 1 4 c. Contoh soal diferensial parsial 1 untuk fungsi y 3x 2 5z 2 2x 2 z 4xz 2 9 tentukanlah derivatif parsialnya. A 0 2 dan b 0 1. Y a sin x b cos x bentuklah pd nya. Soal dan pembahasan persamaan diferensial. Itulah yang dapat kami bagikan terkait contoh soal persamaan diferensial biasa dan penyelesaiannya. Dy dx 2x 4

terjawab β€’ terverifikasi oleh ahli 1. Rina membeli 6 buku dan 3 pensil. Ria membeli 8 buku dan 4 pensil di toko yg sama,jika Rina hrs membayar rp dan Ria rp jika Nia membeli 5 buku dan 3 pensil ,brpkah Nia hrs membayarnya

PAKET3 : 4 pensil + 1 pena + 3 spidol = Rp33.000,00 Γ³ 4x + y + 3z = 33.000 . (3) Demikianlah artikel dari Persamaan Linear : Satu, Dua, Tiga Variabel, Pengertian, Contoh Soal, Rumus, Metode, semoga artikel ini bermanfaat bagi anda semuanya. Baca juga: Asal - Usul Desa Dadapan, Genting, Tunggu dan Kelipang.
Berikut ini merupakan soal dan pembahasan materi persamaan dan fungsi kuadrat. Tipe soalnya berupa soal aplikasi soal cerita yang diambil dari berbagai referensi. Semoga bermanfaat. Baca Juga Soal dan Pembahasan – Persamaan Kuadrat Baca Juga Soal dan Pembahasan – Fungsi Kuadrat Baca Juga Soal dan Pembahasan – Persamaan Kuadrat Versi HOTS/Olimpiade Quote by Fiersa Besari Yang diperbesar itu hati, bukan kepala. Yang diperkuat itu tekad, bukan alasan. Yang diturunkan itu ego, bukan harga diri. Yang diperbaiki itu cara bersikap, bukan cara berbohong. Bagian Pilihan Ganda Soal Nomor 1 Sebuah lapangan berbentuk persegi panjang. Diketahui panjangnya dua kali dari lebarnya. Pada tepi sebelah luar tiga sisi lapangan tersebut dibuat jalan yang lebarnya $2$ meter. Jika luas seluruh jalan yang diarsir pada gambar adalah $128~\text{m}^2$, maka luas lapangan tersebut adalah $\cdots \cdot$ A. $748~\text{m}^2$ D. $450~\text{m}^2$ B. $512~\text{m}^2$ E. $200~\text{m}^2$ C. $480,5~\text{m}^2$ Pembahasan Perhatikan gambar berikut. Diketahui $\begin{aligned} L_{ABCD} & = 2l+4l+2 \\ & = 2l^2 + 8l + 8 \\ L_{\text{Lapangan}} & = 2l \cdot l =2l^2 \\ L_{\text{Jalan}} & = 128~\text{m}^2 \end{aligned}$ Luas lapangan dapat ditentukan dengan mengurangkan luas $ABCD$ dengan luas jalan. Secara matematis, ditulis $\begin{aligned} L_{\text{Lapangan}} & = L_{ABCD} -L_{\text{Jalan}} \\ 2l^2 & = 2l^2 + 8l + 8 -128 \\ 8l & = 120 \\ l & = 15~\text{m}. \end{aligned}$ Diperoleh lebarnya $15$ meter. $L_{\text{Lapangan}} = 2l^2 = 215^2 = 450~\text{m}^2.$ Jadi, luas lapangan itu adalah $\boxed{450~\text{m}^2}$ Jawaban D [collapse] Soal Nomor 2 Suatu peluru ditembakkan ke atas. Tinggi peluru pada saat $t$ detik dirumuskan oleh $ht = 40t -5t^2$ dalam satuan meter. Tinggi maksimum yang dapat ditempuh oleh peluru tersebut adalah $\cdots \cdot$ A. $75$ meter D. $90$ meter B. $80$ meter E. $95$ meter C. $85$ meter Pembahasan Diketahui fungsi kuadrat $ht = 40t-5t^2$ dengan $a = -5, b = 40, c = 0.$ Tinggi maksimum peluru itu dapat ditentukan dengan menggunakan rumus nilai maksimum grafik fungsi kuadrat, yaitu $\begin{aligned} y_{maks} & = \dfrac{D}{-4a} \\ & = \dfrac{b^2-4ac}{-4a} \\ & = \dfrac{40^2 – 4-50}{-4-5} \\ & = \dfrac{ = 80~\text{m}. \end{aligned}$ Jadi, tinggi maksimum yang dapat dicapai peluru adalah $80$ meter. Jawaban B [collapse] Soal Nomor 3 Seorang pemain bola basket mempunyai tinggi $180$ cm, sedangkan tinggi ring adalah $3$ meter. Pemain basket tersebut melempar bola pada jarak sejauh $4$ meter dari posisi horizontal ring dan diasumsikan posisi awal bola tepat berada di atas kepalanya. Ternyata lemparannya mempunyai tinggi maksimum $3,8$ meter dan secara horizontal berjarak $2,5$ meter dari pemain. Jika trayektori lintasan lemparannya berbentuk parabola, maka bola tersebut akan tepat masuk ke ring saat $\cdots \cdot$ ketinggian maksimum lemparan dinaikkan $25$ cm ketinggian maksimum lemparan dinaikkan $12,5$ cm ketinggian maksimum lemparan diturunkan $12,5$ cm ketinggian maksimum lemparan diturunkan $25$ cm ketinggian maksimum lemparan diturunkan $37,5$ cm Pembahasan Sketsakan gambar dalam bidang koordinat seperti berikut. Pemain basket diwakili oleh tanda panah berimpit dengan sumbu-$Y$ dengan panjang $1,8$ meter. Berdasarkan informasi dan menyesuaikan gambar tersebut, diketahui parabola melalui titik $4; 1,2$ serta memotong sumbu-$X$ di dua titik, yaitu $0, 0$ dan $5, 0$. Fungsi kuadratnya dinyatakan oleh $\begin{aligned} y & = ax-x_1x-x_2 \\ 1,2 & = a4-04-5 \\ 1,2 & = a4-1 \\ a & = -\dfrac{1,2}{4} = -0,3. \end{aligned}$ Artinya, $y = -0,3xx-5.$ Absis titik puncak di $x_p = 2,5$. Substitusi untuk mencari nilai $y_p.$ $\begin{aligned} y_p & = -0,3xx-5 \\ & = -0,32,52,5-5 \\ & = -0,32,5-2,5 = 1,875 \end{aligned}$ Tinggi bola dari permukaan adalah $1,8+1,875 = 3,675~\text{m}.$ Padahal, diketahui bahwa tinggi maksimum bola adalah $3,8~\text{m},$ artinya ketinggian maksimum lemparan harus diturunkan $3,8-3,675~\text{m} = 0,125~\text{m}$ atau setara dengan $\boxed{12,5~\text{cm}}$ Jawaban C [collapse] Soal Nomor 4 Tarif telepon rumah yang dibayarkan oleh pelanggan pada suatu wilayah selama satu bulan dirumuskan dengan durasi telepon dalam menit selama satu bulan dikalikan dengan tarif telepon, lalu ditambah dengan biaya berlangganan selama satu bulan. Tarif telepon di wilayah tersebut senilai dengan $250$ lebihnya dari durasi telepon dalam menit. Jika tarif telepon rumah yang dibayarkan oleh pelanggan selama satu bulan dinyatakan dalam $y$, durasi telepon dalam menit dinyatakan dengan $x$, biaya berlangganan selama sebulan dinyatakan dalam $z$, serta biaya berlangganan selama satu bulan sebesar maka persamaan tarif telepon rumah yang dibayarkan oleh pelanggan selama satu bulan dalam rupiah adalah $\cdots \cdot$ A. $y = x^2+50x+ B. $y = x^2+250x + C. $y = x^2+ D. $y = x^ E. $y = -x^2+250x+ Pembahasan Misalkan $$\begin{aligned} y & = \text{tarif telepon rumah yang dibayarkan oleh pelanggan selama satu bulan dalam rupiah} \\ x & = \text{durasi telepon dalam menit} \\ z & = \text{biaya berlangganan selama satu bulan} \end{aligned}$$Rancangan model matematika Tarif telepon rumah yang dibayarkan oleh pelanggan pada suatu wilayah selama satu bulan dirumuskan dengan durasi telepon dalam menit selama satu bulan dikalikan dengan tarif telepon, lalu ditambah dengan biaya berlangganan selama satu bulan $$y = x \cdot \color{red}{\text{tarif telepon rumah per menit}} + z$$ Tarif telepon di wilayah tersebut senilai dengan $250$ lebihnya dari durasi telepon dalam menit $$\color{red}{\text{tarif telepon rumah per menit}} = x + 250$$ Biaya berlangganan selama satu bulan sebesar $z = Persamaan tarif telepon rumah yang dibayarkan oleh pelanggan selama satu bulan dalam rupiah menjadi $$\begin{aligned} y & = x \cdot x + 250 + \\ y & = x^2 + 250x + \end{aligned}$$Jadi, persamaan tarif telepon rumah yang dibayarkan oleh pelanggan selama satu bulan dalam rupiah adalah $\boxed{x^2 + 250x + Jawaban B [collapse] Soal Nomor 5 Pendapatan pengemudi bus antarkota ditentukan dari besarnya UMR Upah Minimum Regional ditambah dengan hasil kali antara jumlah penumpang dan indeks kepuasan pelanggan setiap bulan. Indeks kepuasan pelanggan di suatu bulan senilai dengan $100$ kurangnya dari jumlah penumpang selama bulan itu. Diketahui harga jasa pengemudi dinyatakan dengan $y$, jumlah penumpang dinyatakan dengan $x$, dan indeks kepuasan pelanggan dinyatakan dengan $z$, serta besarnya UMR di wilayah tersebut sebesar Persamaan pendapatan pengemudi pada bulan tersebut dinyatakan dalam rupiah adalah $\cdots \cdot$ A. $y=x^2+100x+ B. $y=x^2-100x+ C. $y=x^2+ D. $y=x^ E. $y=-x^2+100x+ Pembahasan Misalkan $$\begin{aligned} y & = \text{harga jasa pengemudi} \\ x & = \text{jumlah penumpang} \\ z & = \text{indeks kepuasan pelanggan} \end{aligned}$$Rancangan model matematika Pendapatan pengemudi bus antarkota ditentukan dari besarnya UMR Upah Minimum Regional ditambah dengan hasil kali antara jumlah penumpang dan indeks kepuasan pelanggan setiap bulan $$y = + x \cdot z$$ Indeks kepuasan pelanggan di suatu bulan senilai dengan $100$ kurangnya dari jumlah penumpang selama bulan itu $$z = x-100$$ Persamaan pendapatan pengemudi pada bulan tersebut dinyatakan dalam rupiah adalah $$\begin{aligned} y & = + x \cdot x-100 \\ y & = x^2-100x + \end{aligned}$$Jadi, persamaan tarif telepon rumah yang dibayarkan oleh pelanggan selama satu bulan dalam rupiah adalah $\boxed{x^2-100x + Jawaban B [collapse] Bagian Uraian Soal Nomor 1 Dua orang berangkat pada waktu yang sama dan dari tempat yang sama, serta bepergian melalui jalan-jalan yang saling tegak lurus. Seseorang bepergian dengan kecepatan $4$ km/jam lebih cepat dari yang lainnya. Setelah $2$ jam mereka terpisah pada jarak $40$ km. Tentukan jumlah jarak yang ditempuh kedua orang tersebut. Pembahasan Misalkan $A$ dan $B$ adalah nama dua orang tersebut. Kecepatan $A$ dimisalkan $x$ km/jam, berarti kecepatan $B$ adalah $x+4$ km/jam. Jarak tempuh $A$ selama $2$ jam adalah $s_A = v_A \times 2 = 2x~\text{km}.$ Jarak tempuh $B$ selama $2$ jam adalah $\begin{aligned} s_B & = v_B \times 2 \\ & = x+4 \times 2 \\ & = 2x+8~\text{km}. \end{aligned}$ Sekarang perhatikan sketsa berikut. Lintasan $A$ dan $B$ ternyata membentuk sebuah segitiga siku-siku sehingga nilai $x$ dapat ditentukan dengan Teorema Pythagoras. $\begin{aligned} 2x + 8^2 + 2x^2 & = 40^2 \\ 4x^2 + 32x + 64 + 4x^2 & = 1600 \\ 8x^2 + 32x-1536 & = 0 \\ x^2+4x-192 & = 0 \\ x+16x-12 & = 0 \end{aligned}$ Diperoleh $x = -16$ atau $x = 12$. Karena $x$ mewakili besarnya kecepatan, nilainya tidak mungkin negatif. Jadi, diambil $x = 12.$ Jumlah jarak yang ditempuh $A$ dan $B$ adalah $\begin{aligned} s_A + s_B & = 2x + 2x + 8 \\ & = 4x + 8 \\ & = 412 +8 = 56~\text{km}. \end{aligned}$ [collapse] Soal Nomor 2 Diketahui fungsi permintaan suatu produk adalah $Q_d = 30-p^2$ dan persamaan penawaran $Q_s = 4p^2 -95$ dengan $p$ = harga produk. Gambarlah sketsa grafik permintaan dan penawaran pada bidang Kartesius; Tentukan tingkat harga dan jumlah produk ketika terjadi keseimbangan pasar dengan menggunakan cara grafik; Tentukan tingkat harga dan jumlah produk ketika terjadi keseimbangan pasar dengan menggunakan cara menyamakan $Q_d= Q_s.$ Pembahasan Jawaban a Diketahui fungsi permintaan $Q_d=30-p^2.$ Bentuk rumus fungsi di atas dapat disesuaikan dengan variabel pada bidang Kartesius, yakni $fx = y = 30-x^2$. Titik potong grafik terhadap sumbu-$Y$ terjadi ketika $x = 0$. Substitusi menghasilkan $y = 30-0^2=30.$ Jadi, titik potongnya berkoordinat $0, 30.$ Persamaan sumbu simetri dirumuskan oleh $x_{\text{maks}} = -\dfrac{b}{2a} = -\dfrac{0}{2-1} = 0.$ Substitusi $x=0$ menghasilkan $y=30$. Ternyata koordinat titik puncak grafik sama dengan koordinat titik potong grafik terhadap sumbu-$Y,$ yaitu $0, 30$. Tentukan beberapa koordinat titik lain yang dilalui grafik. $$\begin{array}{ccccc} \hline x & -2 & -1 & 1 & 2 \\ \hline y & 26 & 29 & 29 & 26 \\ \hline x,y & -2, 26 & -1, 29 & 1, 29 & 2, 26 \\ \hline \end{array}$$Posisikan titik-titik ini pada bidang Kartesius, lalu hubungkan membentuk parabola yang terbuka ke bawah karena koefisien $x^2$ negatif. Diketahui fungsi penawaran $Q_s=4p^2-95.$ Bentuk rumus fungsi di atas dapat disesuaikan dengan variabel pada bidang Kartesius, yakni $gx = y = 4x^2-95.$ Titik potong grafik terhadap sumbu-$Y$ terjadi ketika $x = 0$. Substitusi menghasilkan $y = 40^2-95 = -95.$ Jadi, titik potongnya berkoordinat $0, -95.$ Persamaan sumbu simetri dirumuskan oleh $x_{\text{maks}} = -\dfrac{b}{2a} = -\dfrac{0}{24} = 0.$ Substitusi $x=0$ menghasilkan $y=-95$. Ternyata koordinat titik puncak grafik sama dengan koordinat titik potong grafik terhadap sumbu-$Y,$ yaitu $0, -95$. Tentukan beberapa koordinat titik lain yang dilalui grafik. $$\begin{array}{ccccc} \hline x & -2 & -1 & 1 & 2 \\ \hline y & -79 & -91 & -91 & -79 \\ \hline x,y & -2, -79 & -1, -91 & 1, -91 & 2, -79 \\ \hline \end{array}$$Posisikan titik-titik ini pada bidang Kartesius, lalu hubungkan membentuk parabola yang terbuka ke atas karena koefisien $x^2$ positif. Jika kedua kurva digambarkan pada satu bidang Kartesius, maka akan terlihat seperti gambar di bawah. Jawaban b Keseimbangan pasar terjadi saat kedua kurva grafik berpotongan di kuadran pertama. Untuk menentukannya menggunakan cara grafik, sebaiknya gunakan kertas milimeter blok. Tampak pada gambar di bawah, keseimbangan pasar terjadi di titik $5, 5$. Ini berarti tingkat harga dan jumlah produknya adalah $5$. Jawaban c Keseimbangan pasar terjadi saat $Q_d= Q_s$. Dengan demikian, diperoleh $\begin{aligned} 30-p^2 & = 4p^2-95 \\ 5p^2 & = 125 \\ p^2 & = 25 \\ p & = \pm 5 \end{aligned}$ Karena $p$ mewakili harga, nilainya tak mungkin negatif sehingga hanya diambil $p=5.$ Substitusi $p=5$ pada $Q_d$ untuk mendapatkan $\begin{aligned} Q_d & = 30-p^2 \\ & = 30-5^2 \\ & = 30-25 = 5. \end{aligned}$ Jadi, tingkat harga dan jumlah produk saat keseimbangan pasar berturut-turut adalah $p=5$ dan $Q_s = Q_d = 5.$ [collapse] Soal Nomor 3 Berdasarkan catatan bendahara perusahaan, penerimaan total perusahaan dapat diformulakan dengan $P = 20 + 200q -2q^2$ dengan $P$ = penerimaan total dalam puluhan ribu rupiah dan $q$ = banyaknya barang yang diproduksi. Sketsalah grafik penerimaan total perusahaan; Berapa unit barang yang diproduksi agar diperoleh penerimaan total maksimum? Berapakah besar total penerimaan maksimum yang diperoleh? Pembahasan Jawaban a Formula penerimaan total perusahaan itu dapat disesuaikan variabelnya dengan bidang Kartesius, yaitu $fx = y = 20+200x-2x^2.$ Persamaan sumbu simetri dirumuskan oleh $x_{\text{maks}} = -\dfrac{b}{2a} = -\dfrac{200}{2-2} = 50.$ Substitusi $x=50$ menghasilkan $\begin{aligned} y & = 20+20050-250^2 \\ & = 20+10000-5000 = 5020. \end{aligned}$ Koordinat titik puncak grafik adalah $50, 5020.$ Posisikan titik ini pada bidang Kartesius, lalu hubungkan membentuk parabola yang terbuka ke bawah karena koefisien $x^2$ negatif. Jawaban b Unit barang yang diproduksi agar diperoleh penerimaan total maksimum dinyatakan oleh persamaan sumbu simetri grafik, yakni $x = q = 50$. Jawaban c Besar total penerimaan maksimum yang diperoleh tercapai ketika $x = q = 50$, yakni $ dalam satuan puluhan ribu rupiah atau $\boxed{\text{Rp} [collapse] Baca Juga Soal dan Pembahasan – Sistem Koordinat Kartesius Soal Nomor 4 Diketahui fungsi penawaran sejenis barang adalah $y = 3x^2 + 9x + 6$ dengan $y$ adalah harga dan $x$ adalah kuantitas. Gambarkan sketsa grafiknya; Tentukan interval jumlah barang yang ditawarkan; Tentukan interval harga penawaran. Pembahasan Jawaban a Fungsi penawarannya dapat ditulis seperti berikut. $\begin{aligned} y & = 3x^2 + 9x + 6 \\ & = 3x^2 + 3x + 2 \\ & = 3x +1x + 2 \end{aligned}$ Titik potong grafik terhadap sumbu-$X$ terjadi ketika nilai $y = 0$. Substitusi menghasilkan $\begin{aligned} 3x+1x+2 & = 0 \\ \Leftrightarrow x+1x+2 & = 0. \end{aligned}$ Diperoleh $x = -1$ atau $x = -2.$ Ini menunjukkan bahwa koordinat titik potong grafik terhadap sumbu-$X$ adalah $-1, 0$ dan $-2, 0.$ Titik potong grafik terhadap sumbu-$Y$ terjadi ketika nilai $x = 0.$ Substitusi menghasilkan $y = 30^2 + 90 + 6 = 6.$ Ini menunjukkan bahwa koordinat titik potong grafik terhadap sumbu-$Y$ adalah $0, 6.$ Persamaan sumbu simetri dirumuskan oleh $x_{\text{maks}} = -\dfrac{b}{2a} = -\dfrac{9}{23} = -\dfrac32.$ Substitusi $x = -\dfrac32$ ke rumus fungsi untuk mendapatkan nilai minimum minimum karena koefisien $x^2$ positif sehingga parabola terbuka ke atas. $$\begin{aligned} y = fx & = 3x^2+9x+6 \\ f\left-\dfrac32\right & = 3\left-\dfrac32\right^2+9\left-\dfrac32\right+6 \\ & = 3 \times \dfrac94 -\dfrac{27}{2} + 6 \\ & = \dfrac{27-54+24}{4} = -\dfrac34 \end{aligned}$$Jadi, titik puncak grafik di $\left-\dfrac32, -\dfrac34\right.$ Plotkan ketiga titik yang ada di sistem koordinat Kartesius seperti gambar di bawah. Hubungkan keempat titik secara mulus berdasarkan jejak parabola. Jawaban b Jumlah barang yang ditawarkan tidak mungkin bernilai negatif dan harus berupa bilangan bulat. Untuk itu, intervalnya adalah $x \geq 0$ dengan $x \in \mathbb{Z}$ anggota bilangan bulat. Jawaban c Harga penawaran minimum dicapai saat nilai $x$ terendah berdasarkan interval yang mungkin. Nilai $x$ terendah adalah $x = 0.$ Substitusi pada $y = 3x^2 + 9x + 6$ menghasilkan $y = 30^2+90+6 = 6.$ Jadi, interval harga penawaran adalah $y \geq 6$. [collapse] Soal Nomor 5 Diketahui fungsi permintaan dan fungsi penawaran suatu barang adalah sebagai berikut $D y = x^2 -8x + 10$ $S y = x^2 + 4x -74$ a. Gambarkan grafik fungsi permintaan; b. Gambarkan grafik fungsi penawaran; c. Tentukan harga keseimbangan pasar. Pembahasan Jawaban a Rumus fungsi permintaan pada kasus ini adalah $fx = y = x^2-8x+10.$ Titik potong grafik terhadap sumbu-$Y$ terjadi ketika nilai $x = 0$. Substitusi menghasilkan $y = 0^2-80+10 = 10.$ Ini menunjukkan bahwa koordinat titik potong grafik terhadap sumbu-$Y$ adalah $0, 10.$ Persamaan sumbu simetri dirumuskan oleh $x_{\text{maks}} = -\dfrac{b}{2a} = -\dfrac{-8}{21} = 4.$ Substitusi $x = 4$ ke rumus fungsi untuk mendapatkan nilai minimum minimum karena koefisien $x^2$ positif sehingga parabola terbuka ke atas. $\begin{aligned} fx & = x^2-8x+10 \\ f4 & = 4^2-84+10 \\ y & = 16-32+10 = -6 \end{aligned}$ Jadi, titik puncak grafik di $4, -6.$ Selanjutnya, substitusikan $x = 3$ dan $x = 5$ untuk mencari nilai fungsi permintaan bilangan $3$ dan $5$ dipilih karena berdekatan dengan $4$. $\begin{aligned} fx & = x^2-8x+10 \\ f3 & = 3^2-83+10 = -5 \\ f5 & = 5^2-85+10 = -5 \end{aligned}$ Jadi, grafik melalui titik $3, -5$ dan $5, -5.$ Plotkan keempat titik yang ada di sistem koordinat Kartesius seperti gambar di bawah. Hubungkan keempat titik secara mulus berdasarkan jejak parabola. Jawaban b Rumus fungsi penawaran pada kasus ini adalah $fx = y = x^2 + 4x -74.$ Titik potong grafik terhadap sumbu-$Y$ terjadi ketika nilai $x = 0$. Substitusi menghasilkan $y = 0^2+40-74= -74.$ Ini menunjukkan bahwa koordinat titik potong grafik terhadap sumbu-$Y$ adalah $0, -74.$ Persamaan sumbu simetri dirumuskan oleh $x_{\text{maks}} = -\dfrac{b}{2a} = -\dfrac{4}{21} = -2.$ Substitusi $x = -2$ ke rumus fungsi untuk mendapatkan nilai minimum minimum karena koefisien $x^2$ positif sehingga parabola terbuka ke atas. $\begin{aligned} fx & = x^2+4x-74 \\ f-2 & = -2^2+4-2-74 \\ y & =4-8-74= -78 \end{aligned}$ Jadi, titik puncak grafik di $-2, -78.$ Selanjutnya, substitusikan $x = -1$ dan $x = -3$ untuk mencari nilai fungsi permintaan bilangan $-1$ dan $-3$ dipilih karena berdekatan dengan $-2$. $\begin{aligned} fx & = x^2+4x-74 \\ f-1 & = -1^2+4-1-74 \\ & = 1-4-74=-77 \\ f-3 & = -3^2+4-3-74 \\ & = 9-12-74=-77 \end{aligned}$ Jadi, grafik melalui titik $-1, -77$ dan $-3, -77$. Plotkan keempat titik yang ada di sistem koordinat Kartesius seperti gambar di bawah. Hubungkan keempat titik secara mulus berdasarkan jejak parabola. Jawaban c Keseimbangan pasar terjadi ketika grafik fungsi permintaan dan fungsi penawaran berpotongan. Ini berarti $\begin{aligned} D & = S \\ \cancel{x^2}-8x+10 & = \cancel{x^2}+4x-74 \\ -8x-4x & = -74-10 \\ -12x & = -84 \\ x & = 7. \end{aligned}$ Harga keseimbangan pasar dapat dihitung dengan mensubstitusikan $x=7$ pada salah satu fungsi boleh fungsi penawaran, boleh juga fungsi permintaan. Misalkan substitusinya pada fungsi permintaan $D$. $\begin{aligned} fx & = x^2-8x+10 \\ f7 & = 7^2-87+10 \\ & = 49-56+10 = 3. \end{aligned}$ [collapse] Soal Nomor 6 Fungsi permintaan yang dihadapi oleh produsen sebuah produk makanan ditunjukkan oleh $P = 400 + 20q -q^2$, dengan $P$ menyatakan harga permintaan, sedangkan $q$ menyatakan kuantitas jumlah barang. Tentukan harga permintaan jika barang yang ditawarkan sebanyak $5$ unit; Jumlah barang maksimal yang ditawarkan; Tentukan banyaknya barang jika harga permintaan sebesar $464$. Pembahasan Jawaban a Diketahui $P = 400 + 20q -q^2.$ Harga permintaan jika barang yang ditawarkan sebanyak $5$ unit $q = 5$ adalah $\begin{aligned} P & = 400 + 205-5^2 \\ & = 400+100-25 \\ & = 475. \end{aligned}$ Jawaban b Jumlah barang maksimal yang ditawarkan berdasarkan fungsi permintaan $P = 400 + 20q -q^2$ dinyatakan oleh persamaan sumbu simetri fungsi kuadrat tersebut. $x_{\text{maks}} = -\dfrac{b}{2a} = -\dfrac{20}{2-1} = 10.$ Jadi, jumlah barang maksimal yang dapat ditawarkan adalah $\boxed{10}$ unit. Jawaban c Diketahui $P = 400 + 20q -q^2$ dan $P = 464.$ Akan dicari nilai $q$ yang memenuhi persamaan kuadrat yang terbentuk. $\begin{aligned} 400 + 20q -q^2 & = 464 \\ -64 + 20q -q^2 & = 0 \\ q^2 -20q + 64 & = 0 \\ q -4q-16 & = 0 \end{aligned}$ Diperoleh nilai $q = 4$ atau $q = 16.$ [collapse] juga Kuesioner ini diambil dari dokumen Lestari (2016) dengan memodifikasi seperlunya yang terdiri dari 24 butir pertanyaan. Tes pemecahan masalah terdiri dari 4 soal dengan waktu pengerjaan 80 menit. Materi yang digunakan yaitu sistem persamaan linier dua variabel.
BerandaTuliskan soal cerita dari persamaan 28 βˆ’ n = 5 .PertanyaanTuliskan soal cerita dari persamaan .DKMahasiswa/Alumni Universitas Negeri MalangPembahasanSalah satu alternatif soal cerita yang dapat dibuat. Ayah sedang membawa air dalam jerigen yang berisi 28 liter tanpa disadari oleh ayah ternyata jerigen tersebut bocor. Pada saat Ayah sampai di rumah ternyata air dalam jerigen tersebut hanya 5 liter, berapa liter air yang bocor dari jerigen ayah?Salah satu alternatif soal cerita yang dapat dibuat. Ayah sedang membawa air dalam jerigen yang berisi 28 liter tanpa disadari oleh ayah ternyata jerigen tersebut bocor. Pada saat Ayah sampai di rumah ternyata air dalam jerigen tersebut hanya 5 liter, berapa liter air yang bocor dari jerigen ayah? Perdalam pemahamanmu bersama Master Teacher di sesi Live Teaching, GRATIS!743Yuk, beri rating untuk berterima kasih pada penjawab soal!TFTazkia Fitria Pembahasan tidak lengkap Pembahasan tidak menjawab soalΒ©2023 Ruangguru. All Rights Reserved PT. Ruang Raya Indonesia

soaldan pembahasan persamaan garis lurus. MARETONG. Kumpulan Rumus serta Contoh Soal dan Pembahasan $4y + 28 = -3(x - 2)$ $4y + 28 = -3x + 6$ $3x + 4y + 28 - 6 = 0$ $3x + 4y + 22 = 0$ jawab: B. Jika ada saran dan kritik yang sifatnya membangun atau ada koreksi silahkan tuliskan di kolom komentar. Newer Posts Older Posts POPULAR POST.

SoalCerita Sistem Persamaan Linear Dua Variabel (SPLDV. 2018. Lisda Damayanti. Download Download PDF. Full PDF Package Download Full PDF Package. This Paper. A short summary of this paper. 31 Full PDFs related to this paper. Read Paper. Download Download PDF. Tuliskanbagaimana kamu memperolehnya! e. Jika harga penjualan sampai siang hari adalah Rp.65.000,-, berapa banyakkah masing- masing jenis ikan yang telah dijualnya? Tuliskan bagaimana kamu memperolehnya! 2. 2p + q = 1 3p – q = 4 a. Tentukanlah penyelesaian dari sistem persamaan linear diatas b. Buatlah soal cerita dari model matematika SOAL1. Pak Ali sedang membuat tembok dari batu bata. Banyak batu bata di tiap lapisan membentuk barisan aritmetika. Jika banyak batu bata di lapisan paling atas adalah 10 buah dan 32 lapis yang sudah dipasang membutuhkan 1.312 batu bata, maka banyak batu bata pada lapisan paling bawah adalah . Diketahuibesarnya uang yang ditabung tiap minggu membentuk barisan aritmetika dengan, tabungan minggu pertama = a = 30.000. penambahan tabungan tiap minggu = b = 8.000. lama menabung = n = 14. Besarnya uang Rasti pada minggu ke-14 adalah banyaknya tabungan awal ditambah dengan uang yang ditabung tiap minggu ( U14) sehingga, Jadi, besarnya uang C7Epp.
  • wer98z4xhw.pages.dev/177
  • wer98z4xhw.pages.dev/403
  • wer98z4xhw.pages.dev/158
  • wer98z4xhw.pages.dev/18
  • wer98z4xhw.pages.dev/447
  • wer98z4xhw.pages.dev/164
  • wer98z4xhw.pages.dev/243
  • wer98z4xhw.pages.dev/118
  • tuliskan soal cerita dari persamaan 28 n 5